Search results for "leaf area index"

showing 10 items of 105 documents

Comparison of Crop Trait Retrieval Strategies Using UAV-Based VNIR Hyperspectral Imaging.

2021

Hyperspectral cameras onboard unmanned aerial vehicles (UAVs) have recently emerged for monitoring crop traits at the sub-field scale. Different physical, statistical, and hybrid methods for crop trait retrieval have been developed. However, spectra collected from UAVs can be confounded by various issues, including illumination variation throughout the crop growing season, the effect of which on the retrieval performance is not well understood at present. In this study, four retrieval methods are compared, in terms of retrieving the leaf area index (LAI), fractional vegetation cover (fCover), and canopy chlorophyll content (CCC) of potato plants over an agricultural field for six dates duri…

Canopystatistical method010504 meteorology & atmospheric sciencesScience0211 other engineering and technologiesGrowing season02 engineering and technologyLUT-based inversion; hybrid method; statistical method; leaf area index; fractional vegetation cover; canopy chlorophyll content01 natural sciencesLUT-based inversionhybrid methodLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingfractional vegetation coverleaf area indexQHyperspectral imagingcanopy chlorophyll contentStatistical modelRandom forestVNIRGeneral Earth and Planetary SciencesScale (map)Remote sensing
researchProduct

Brown and green LAI mapping through spectral indices

2015

Abstract When crops senescence, leaves remain until they fall off or are harvested. Hence, leaf area index (LAI) stays high even when chlorophyll content degrades to zero. Current LAI approaches from remote sensing techniques are not optimized for estimating LAI of senescent vegetation. In this paper a two-step approach has been proposed to realize simultaneous LAI mapping over green and senescent croplands. The first step separates green from brown LAI by means of a newly proposed index, ‘Green Brown Vegetation Index (GBVI)’. This index exploits two shortwave infrared (SWIR) spectral bands centred at 2100 and 2000 nm, which fall right in the dry matter absorption regions, thereby providing…

Global and Planetary ChangeHyperspectral imagingEnhanced vegetation indexVegetationSpectral bandsManagement Monitoring Policy and LawGeographyAbsorption bandComputers in Earth SciencesLeaf area indexAbsorption (electromagnetic radiation)HyMapEarth-Surface ProcessesRemote sensingInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment

2016

This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spanning 4 continents and covering 15 crop types with corresponding Landsat satellite images. Best-fit functions for the LAI-VI relationships were generated and assessed in terms of crop type, vegetation index, level of radiometric/atmospheric processing, method of LAI measurement, as well as the time difference between LAI measurements and satellite overpass. These global LAI-VI relationships were evalu…

Agroecosystemagroecosystem modeling010504 meteorology & atmospheric sciencesMean squared error0211 other engineering and technologiesRobust statisticsLAI; Vegetation Index; agriculture; Landsat; agroecosystem modeling02 engineering and technologyCrop01 natural sciencesUniversalityNormalized Difference Vegetation IndexArticleLAI-VI relationshipLeaf area indexlcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingagriculture2. Zero hungerGlobalEnhanced vegetation index15. Life on landLAIGeneral Earth and Planetary Scienceslcsh:QSymbolic regressionLandsatAgricultural landscapesVegetation Index
researchProduct

Retrieval of chlorophyll content and LAI of crops using hyperspectral techniques: application to PROBA/CHRIS data

2008

Hyperspectral/multiangular data allow the retrieval of important vegetation properties at canopy level, such as the Leaf Area Index (LAI) and Leaf Chlorophyll Content. Current methods are based on the relationship between biophysical properties and retrievals from those spectral bands (from the complete hyperspectral/multiangular information) where specific absorption features are present within the considered spectral range. Furthermore, new sensors such as PROBA/CHRIS provide continuous hyperspectral reflectance measurements that can be considered as a continuous function of wavelength. The mathematical analysis of these continuous functions allows a new way of exploiting the relationship…

chemistry.chemical_compoundChlorophyll achemistryChlorophyllGeneral Earth and Planetary SciencesHyperspectral imagingEnvironmental scienceContext (language use)SatelliteSpectral bandsLeaf area indexHyMapRemote sensingInternational Journal of Remote Sensing
researchProduct

Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory

2018

International audience; Clumping index (CI) is a measure of foliage aggregation relative to a random distribution of leaves in space. The CI can help with estimating fractions of sunlit and shaded leaves for a given leaf area index (LAI) value. Both the CI and LAI can be obtained from global Earth Observation data from sensors such as the Moderate Resolution Imaging Spectrometer (MODIS). Here, the synergy between a MODIS-based CI and a MODIS LAI product is examined using the theory of spectral invariants, also referred to as photon recollision probability ('p-theory'), along with raw LAI-2000/2200 Plant Canopy Analyzer data from 75 sites distributed across a range of plant functional types.…

0106 biological sciencesCanopyEarth observationPhoton010504 meteorology & atmospheric sciencesF40 - Écologie végétalehttp://aims.fao.org/aos/agrovoc/c_1920Soil Science01 natural sciencesMeasure (mathematics)http://aims.fao.org/aos/agrovoc/c_7701Multi-angle remote sensingProbability theoryhttp://aims.fao.org/aos/agrovoc/c_718Foliage clumping indexRange (statistics)http://aims.fao.org/aos/agrovoc/c_3081[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyComputers in Earth SciencesLeaf area indexhttp://aims.fao.org/aos/agrovoc/c_4039http://aims.fao.org/aos/agrovoc/c_4116Photon recollision probabilityhttp://aims.fao.org/aos/agrovoc/c_10672http://aims.fao.org/aos/agrovoc/c_32450105 earth and related environmental sciencesMathematicsRemote sensinghttp://aims.fao.org/aos/agrovoc/c_8114GeologyVegetationhttp://aims.fao.org/aos/agrovoc/c_5234http://aims.fao.org/aos/agrovoc/c_7558Leaf area indexhttp://aims.fao.org/aos/agrovoc/c_7273http://aims.fao.org/aos/agrovoc/c_1236http://aims.fao.org/aos/agrovoc/c_1556U30 - Méthodes de recherchehttp://aims.fao.org/aos/agrovoc/c_4026010606 plant biology & botanyhttp://aims.fao.org/aos/agrovoc/c_6124
researchProduct

Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies

2019

Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through…

Canopy010504 meteorology & atmospheric sciencesUFSP13-8 Global Change and BiodiversityVegetation15. Life on land010502 geochemistry & geophysics01 natural sciencesArticleImaging spectroscopy10122 Institute of GeographyGeophysicsSpectroradiometer13. Climate actionGeochemistry and Petrology1906 Geochemistry and PetrologyRadiative transferMeasurement uncertaintyEnvironmental scienceSatellite910 Geography & travel1908 GeophysicsLeaf area index0105 earth and related environmental sciencesRemote sensing
researchProduct

Down-Scaling Modis Vegetation Products with Landsat GAP Filled Surface Reflectance in Google Earth Engine

2020

High spatial resolution vegetation products are fundamental in different fields, such as improving the understanding of crop seasonality at regional scales. Here, two new vegetation products such as the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are downscaled at continental scales. A novel HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HIS-TARFM) is used to generate the gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectance for the contiguous United States. An artificial neural network is trained to capture the relationship between the gap free Landsat surface reflectance and the MODI…

010504 meteorology & atmospheric sciences0208 environmental biotechnology02 engineering and technologyDown scalingVegetationSeasonalitymedicine.disease01 natural sciencesReflectivity020801 environmental engineeringPhotosynthetically active radiationHigh spatial resolutionmedicineEnvironmental scienceLeaf area indexImage resolution0105 earth and related environmental sciencesRemote sensingIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data.

2019

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with…

010504 meteorology & atmospheric sciencesradiative transfer models0211 other engineering and technologiesemulation02 engineering and technologytop-of-atmosphere radiance data01 natural sciencesEmulation; Global sensitivity analysis; Machine learning; MODTRAN; PROSAIL; Radiative transfer models; Retrieval; Sentinel-2; Top-of-atmosphere radiance dataKrigingRange (statistics)Radiative transferLeaf area indexlcsh:Scienceretrieval021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingMODTRANPROSAILMODTRANAtmospheric correctionradiative transfer models; global sensitivity analysis; emulation; machine learning; top-of-atmosphere radiance data; PROSAIL; MODTRAN; retrieval; Sentinel-2machine learningglobal sensitivity analysisLookup tableRadianceGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QSentinel-2Remote sensing
researchProduct

Influencia del ángulo de observación en la estimación del índice de área foliar (LAI) mediante imágenes PROBA/CHRIS

2016

La estimación de variables biofísicas como el Índice de Área Foliar (LAI) mediante técnicas de teledetección es objeto de numerosos estudios, ya que de su conocimiento se puede extraer valiosa información sobre el estado de la vegetación. En este trabajo se estudia la estimación del LAI mediante imágenes multiangulares PROBA/CHRIS, analizando el comportamiento de la reflectividad medida en sus 5 ángulos de observación, en las longitudes de onda de 665 y 705 nm correspondientes a la banda de absorción de la clorofila y la reflectividad de la vegetación en el Red-Edge, respectivamente. El Índice de Diferencia Normalizada (NDI) calculado en estas longitudes de onda, mostró una buena correlació…

010504 meteorology & atmospheric sciencesRed-EdgeGeography Planning and Development0211 other engineering and technologieslcsh:G1-92202 engineering and technologyViewing angle01 natural sciencesReflectivityNDILAIPROBA/CHRISGeographyEarth and Planetary Sciences (miscellaneous)multiangularLeaf area indexSentinel-2lcsh:Geography (General)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRevista de Teledetección
researchProduct

A multisensor fusion approach to improve LAI time series

2011

International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …

010504 meteorology & atmospheric sciencesMeteorologytélédétectionsatellite0211 other engineering and technologiesSoil Scienceréseau neuronal02 engineering and technology01 natural sciencessuivi de culturesInstrumentation (computer programming)Computers in Earth SciencesLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingVegetationGeologyVegetationData fusionLAI time seriesSensor fusionMissing dataLAI time series;Vegetation;Modis;Temporal smoothing;Gap filling;Data fusionqualité des données13. Climate actionAutre (Sciences de l'ingénieur)Gap filling[SDE]Environmental SciencesEnvironmental scienceSatelliteModisTemporal smoothingScale (map)Smoothing
researchProduct